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Motivation

• Tom is a cat. Jerry is a mouse.
• They’re playing hide-and-seek games in the house every day.
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Motivation
• Suppose Tom and Jerry live in the same space. Tom and Jerry

simultaneously choose their own location.
• Tom: get close to Jerry
• Jerry: get away from Tom
• What strategies should they play?
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Applications
Hide-and-seek game

Feature: interest conflict between proximity and distance
• Economy world

• immitator and innovator: design of products
• Politics

• conservatives and radicals
• Society

• police and criminal: allocation of resources in city management
• Military

• information seeker and hider
• attacker and defenser

• Animal world
• predators and preys: distribution pattern of habitat
• pest control: distribution pattern of pesticide and pests

• · · · · · ·
Question: the characterization of equilibrium behavior?
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Literature review
Hide-and-seek game

• Hide-and-seek game
• von Neumann (1953): one player aims to win by matching the other’s

decision, while the other aims to win by mismatching.
• Fristedt (1977): hider hides a particle in R and seeker searches for it

with a limited speed.
• Kikuta (1990): hider hides in one of the (n + 1) cells and seeker

searches for it with costs.
• Petrosjan (1993): point-choosing model in a R2 triangle.
• (Crawford and Iriberri, 2007, among many others): experiment of the

hide-and-seek game.
• Alpern (2008): hide-and-seek game in a network.
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Literature review
Games in a space

• Hotelling model
• Hotelling (1929): the impact of location on duopoly competition.
• d’Aspremont et al. (1979), Salop (1979), Owen and Shapley (1989),

Mazalov and Sakaguchi (2003): variants of Hotelling model.
• Matching pennies game

• Jordan (1993): proposed an example of 3-player matching pennies
game.

• McCabe et al. (2000): experiments about 3-player matching pennies
games.

• Goeree et al. (2003): risk averse behavior in generalized matching
pennies games.

• Cao and Yang (2014), Cao et al. (2019): the extension of matching
pennies game in networks.

• Bhattacharya (2016): information design in a matching pennies game.
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Our Model
Γ
(
X, ∥ · ∥2

)
• A is the seeker (distance minimizer) and B is the hider (distance

maximizer).
• X ⊆ Rn is the territory.
• X is a compact convex set.

X

• Player i chooses xi ∈ X simultaneously.
• pure strategy profile: xi ∈ X
• mixed strategy profile: σi ∈ ∆(X) (probability measure, assumed to be

a Borel measure)
• Support of σi: Supp(σi)
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Our Model
Γ
(
X, ∥ · ∥2

)
• Utility: p−norm distance

∥x∥p ≡
( n∑

k=1

|xk|p
) 1

p ∀x = (x1, x2, · · · , xn) ∈ Rn

• this paper assumes p = 2
• seeker: uA(xA, xB) = −∥xA − xB∥2
• hider: uB(xA, xB) = ∥xA − xB∥2

• Expected utility:

UA(σA, σB) = ExA∼σA,xB∼σB

(
uA

)
=

∫
X×X

−∥xA − xB∥2 dσA dσB

UB(σA, σB) = ExA∼σA,xB∼σB

(
uB

)
=

∫
X×X

∥xA − xB∥2 dσA dσB

• Nash Equilibrium

Ui(σ
∗
i , σ

∗
−i) ≥ Ui(xi, σ

∗
−i) ∀σi ∈ ∆(X), ∀i ∈ {A,B}
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Two Examples

expected utility of hider (seeker) = +(−) expected distance
• Black: seeker A
• Blue: hider B

A3 5B1 B2
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Geometric definition
Ball and minimal cover ball

Definition
A ball in Rn is defined as the closed set

b(x, r) =
{

x′ ∈ Rn∣∣∥x′ − x∥2 ≤ r
}

where x is defined as the center of the ball and r is defined as the radius of
the ball.

Definition
The ball b(x∗, r∗) is a minimal cover ball of compact convex set X in Rn if
the following two conditions are satisfied:

• X ⊆ b(x∗, r∗).
• ∀b(x, r) s.t. X ⊆ b(x, r), there is r∗ ≤ r.

The minimal cover ball of compact convex set X is denoted as bmc(X).
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Geometric definition
Minimal cover ball

Examples: minimal cover ball
• obtuse triangle
• acute triangle

x∗
x2x1

x3

x2

x1

x3

x∗
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Geometric definition
Properties of minimal cover ball

Lemma
If X is a non-empty compact set in Rn, then the minimal cover ball of X
always exists and is unique.

Lemma
If X is a non-empty compact convex set in Rn, then the minimal cover
ball, denoted as bmc(X) = b(x∗, r∗), satisfies x∗ ∈ X.
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Main results
No pure strategy Nash Equilibrium

Proposition
In a Tom-and-Jerry Game Γ

(
X, ∥ · ∥2

)
, in any Nash Equilibrium (if exists),

the hider B’s equilibrium strategy cannot be a pure strategy.

Corollary
In a Tom-and-Jerry Game Γ

(
X, ∥ · ∥2

)
, there exists no pure strategy Nash

Equilibrium.
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Main results
Two types of Nash Equilibrium

Categorization:
• Type I strategy profile

• seeker: pure strategy
• hider: non-pure strategy

• Type II strategy profile
• seeker: non-pure strategy
• hider: non-pure strategy
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Characterization Conditions
What should Type I equilibrium look like?

Support set condition
Suppose X̂ is a subset of X in Rn. Player i’s mixed strategy σi(xi) is said
to “be supported by X̂”, iff Supp(σi) ⊆ X̂.

Center of mass condition
Suppose x̂ ∈ Rn. Player i’s mixed strategy σi(xi) is said to “have a center
of mass at x̂”, iff Exi∼σi(xi) ≡

∫
X xi dσi = x̂.
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Main results
Theorem 1

Theorem 1
Existence
In a Tom-and-Jerry Game Γ

(
X, ∥ · ∥2

)
, suppose X is a compact convex

set. Then there always exists a Type I Nash Equilibrium.

Characterization
A strategy profile (x∗A, σ∗

B) is a Type I Nash Equilibrium, iff (x∗A, σ∗
B)

satisfies:
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Main results
Theorem 1

Theorem 1
1 The seeker A adopts a pure strategy x∗A = x∗ at the center of the

minimal cover ball of X, bmc(X) = b(x∗, r∗).
2 The hider B adopts a mixed strategy σ∗

B(xB) satisfying
• support set condition: Supp(σ∗

B) ⊆ ∂X ∩ ∂bmc(X)
• center of mass condition: ExB∼σ∗

B
(xB) = x∗

In any Nash Equilibria of Tom-and-Jerry game, the equilibrium utility is

U∗
A = −r∗

U∗
B = r∗
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Main results
Intuition about Theorem 1

• the seeker A: the center of the minimal cover ball bmc(X)
• the hider B: boundary of X and bmc(X): ∂X ∩ ∂bmc(X)
• the center of mass condition for the hider B

ExB∼σ∗
B
(xB) =

∫
X

xB dσ∗
B = x∗

is equivalent to the best response condition that
∇AUA(xA, σ

∗
B)
∣∣
xA=x∗ = 0

x∗
x2x1

x3

x2

x1

x3

x∗
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Main results
Intuition about Theorem 1

• Closed interval (segment) and right-angle triangle

x∗
x2x1

(a) closed interval

x∗
x2x1

x3

(b) right triangle
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Main results
Intuition about Theorem 1

• Multiple Type I Nash Equilibria

x1

x3

x5

x2

x4

x6
x∗
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Main results
Intuition about Theorem 1

How to prove that there always exists a probabilistic distribution σ∗
B

with Supp(σ∗
B) ⊆ ∂X ∩ ∂bmc(X) for the hider B, so that center of

mass condition is satisfied?
• Observation

• Not all the points in ∂X ∩ ∂bmc(X) locate at the strictly same side of
any hyperplane that passes through the center of minimal cover ball.

• Otherwise: (a 2-dimension example)

x∗
a

(The minimal cover ball can shift a little bit along a to strictly reduce the
radius. This leads to contradiction! )
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Main results
Intuition about Theorem 1 (Existence): an interesting observation

• Suppose Vn is a non-zero compact set in Rn.
• n is the number of space dimensions.

• The following two statements are exclusive:
• For any hyperplane that passes through the origin, there always exist

two vectors in Vn that lie on the different side of the hyperplane.
• There exists a hyperplane a that passes through the origin, so that all

the vectors in Vn lie strictly on the same side of the hyperplane.
• A 2-dimension example:

Vn

aO

Vn

a
O
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Intuition about Theorem 1
An interesting observation

• Correspondingly:
• Able to find some vectors in Vn, whose non-trivial convex combination

is 0
• Any non-trivial convex combination of any vectors in Vn will never be 0

Vn

aO

Vn

a
O

Question: How to express such a summation (or linear combination)?
——–Borel measure and integration on a compact set.
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Intuition about Theorem 1
An Extension of Farkas Lemma

An Extension of Farkas Lemma
For any n ≥ 1, for any non-empty, non-zero and compact set Vn in Rn,
the following statement system

• An:

∃ ξ ∈ M+(Vn)− {0} s.t.
∫

Vn

vn dξ = 0

• Bn:

∃ a ∈ Rn s.t. aTv ≥ 0 ∀v ∈ Cone(Vn), ‘‘ =′′⇔ v = 0

• Cn:

∃ a ∈ Cone(Vn) s.t. aTv ≥ 0 ∀v ∈ Cone(Vn), ‘‘ =′′⇔ v = 0
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Intuition about Theorem 1
An Extension of Farkas Lemma

satisfies the relationship

An ⇔ (¬Bn) ⇔ (¬Cn)

Vn

aO

Vn

a
O

• Definition of measure space: relegated to Appendix
• Intuition of proof: properties of cone and dual cone
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Proof of Theorem 1

Logics:

bmc(X) is the minimal cover ball
⇒ For any hyperplane that passes through the center of the mini-

mal cover ball, there always exists two vectors in ∂X∩∂bmc(X)
that are separated on (weakly) different sides of the plane

⇔ (¬Bn) (Here Vn =
{

x − x∗
∣∣x ∈ ∂X ∩ ∂bmc(X)

}
)

⇔ An
⇔ ∃ σ∗

B s.t.
∫
∂X∩∂bmc(X)(xB − x∗) dσ∗

B = 0

⇔ ∃ σ∗
B satisfying center of mass condition ExB∼σ∗

B
(xB) = x∗

If X is compact and convex, then Type I Nash Equilibrium always exists.
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Characterization Conditions
What should Type II equilibrium look like?

Intersection condition
∂X ∩ ∂bmc(X) = {x1, x2}, where x1 + x2 = 2x∗.

Extreme-point condition
Intersection condition holds and then

x1, x2 ̸∈ EP(X)− {x1, x2}

x∗
x2x1

x3

x∗

X
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Main results
Theorem 2

Theorem 2
Existence
In a Tom-and-Jerry Game Γ

(
X, ∥ · ∥2

)
, suppose the territory X is compact

and convex. Then for the existence of Type II Nash Equilibrium,
• the intersection condition is a necessary condition
• the extreme-point condition is a sufficient condition

Characterization
A Type II strategy profile (σ∗

A, σ
∗
B) is a Type II Nash Equilibrium, iff

(σ∗
A, σ

∗
B) satisfies:
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Main results
Theorem 2

Theorem 2
• The seeker A adopts a mixed strategy σ∗

A satisfying
• Supp(σ∗

A) ⊆ x1x2, where x1x2 is the unique diameter that is specified
in the intersection condition.

• ExA∼σ∗
A
(xA) = x∗

• ∀xB ∈ X, ExA∼σ∗
A

(
∥xB − xA∥2

)
≤ r∗, which disallows any possible

deviation of the hider B.
• The hider B adopts a mixed strategy σ∗

B with equal probability
weights only at the both endpoints of the diameter x1x2:

σ∗
B(xB) =

{
1
2 , if xB ∈ {x1, x2}
0, if xB /∈ {x1, x2}
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Main results
Existence result

Proposition
For any compact convex set X1 and X2 with X1 ⊆ X2 and
bmc(X1) = bmc(X2), if the Tom-and-Jerry Game with common territory
X2 has a Type II Nash Equilibrium, then there also exists a Type II Nash
Equilibrium in the Tom-and-Jerry Game with common territory X1.

x∗ x1
x2

x3 x4
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Main results
Existence result

• Is the extreme-point condition is a necessary and sufficient condition
for the existence of Type II Nash Equilibrium?

• NO.
• Are there some weird shapes that satisfy intersection condition but

Type II Nash Equilibria do not exist?
• YES.
• We construct an example in R2 as follows, named “weird X”.

Note:
Any compact convex polyhedron always satisfies the extreme-point
condition.
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Main results
Existence result

• Weird X
• A “polyhedron” with infinite vertices and edges.
• That is the reason why we leave the necessary and sufficient condition

for the existence of Type II Nash Equilibrium as an open problem.

x∗ x1
x2

x3 x4x5

xn

Figure: The shape of weird X.
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Main results
Existence result

Example
In R2 (expressed in cartesian coordinate), x1 = (r∗, 0), x2 = (−r∗, 0) where
r∗ ∈ R++. Construct an infinite point sequence {xn}+∞

n=3 converging to x1

xn =
(
(1− 1

2n )r
∗ cos π

2(n − 2)
, (1− 1

2n )r
∗ sin π

2(n − 2)

)
, n ≥ 3

Define
X =

( +∞
∪

n=2
△x∗xnxn+1

)
∪ x1x∗

Here △ means triangle and x1x∗ means segment x1x∗.
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Main results
Existence result

x∗ x1
x2

x3 x4x5

xn

Figure: The shape of weird X. {xn}+∞
n=3 is a point sequence converging to x1.

We can prove:
• X is well-defined;
• X is compact and convex;
• X satisfies intersection condition;
• Type II Nash Equilibrium does not exist.
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Summary
Type I and Type II Nash Equilibrium

• Existence
Type I always exists
Type II depends on the shape of X

• Uniqueness

Existence of Type II Nash Equilibrium
⇒ a unique Type I Nash Equilibrium (a point symmetric one)
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Summary
Type I and Type II Nash Equilibrium

• Number of Type I and Type II Nash Equilibrium

Type I
Type II

0 continuum

1 !(rectangle) !(segment)
continuum !(ball) #

Table: The number of Type I and Type II Nash Equilibria when XA = XB = X is
compact and convex. !means a possible combination and # means an
impossible one. For each possible combination, an example of the shape of X in
R2 are given in the brackets.
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Discussions
Minimal cover ball

Necessary and sufficient conditions of minimal cover ball
Suppose X is a compact convex set in Rn except for a singleton. b(x∗, r∗)
is a ball. Then b(x∗, r∗) is a minimal cover ball of X iff the following three
statements are all satisfied: (i) X ⊆ b; (ii) |∂X ∩ ∂b| ≥ 2; (iii) there exists
no (n − 1)−dimension hyperplane passing through x∗ so that all the points
in ∂X ∩ ∂b lie strictly on the same side of the hyperplane, or formally,

∀a ∈ Rn, ∃x1 ̸= x2 ∈ ∂X ∩ ∂b s.t. aT(x1 − x∗) aT(x2 − x∗) ≤ 0

• condition (iii) ⇒ ¬Bn in the geometric lemma system
• a part of the proof for Theorem 1
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Discussions
The minimal cover ball and the corresponding convex optimization problem

Convex optimization problem
For any compact convex set X, construct a convex optimization problem

min
x∈Rn

max
x′∈X

∥x − x′∥p

where p ≥ 1 is the norm distance. For the minimal cover ball of X
(denoted as bmc(X) = b(x∗, r∗)), its center is the optimal solution

x∗ = arg min
x∈Rn

max
x′∈X

∥x − x′∥p

and its radius is the optimal value

r∗ = min
x∈Rn

max
x′∈X

∥x − x′∥p = max
x′∈X

∥x∗ − x′∥p
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Discussions
Solution to the minimal cover ball for polyhedron

Definition
X is a compact convex polyhedron in Rn, if and only if X is a compact set
in Rn and there exist A ∈ Rm×n and b ∈ Rm so that
X =

{
x ∈ Rn∣∣Ax ≤ b

}
.

Lemma
If X is a compact convex polyhedron and the minimal cover ball of X is
bmc(X), then

∂X ∩ ∂bmc(X) ⊆ EP(X)

where |EP(X)| < +∞ is a finite set.
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Extensions
Alternative settings

• Ball surface territory X
• When X is a ball surface Sn

• Unoverlapped territory: XA ̸= XB
• Player i’s territory: Xi

• Partially overlapped territory
• Complementary territory
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Extensions
Ball surface territory

Assumption 2
X = Sn, where

Sn =
{
(z1, z2, · · · , zn+1) ∈ Rn+1

∣∣ n+1∑
k=1

z2k = 1
}

Angle distance metric on ball surface
For any two points x, y in a sphere Sn in Rn+1, the distance between x and
y, denoted as ⟨x, y⟩, is defined as the angle between x and y:

⟨x, y⟩ = arccos(xTy) ∈ [0, π] ∀x, y ∈ Sn

• UA(σA, σB) = ExA∼σA,xB∼σB(−⟨xA, xB⟩)
• UB(σA, σB) = ExA∼σA,xB∼σB(⟨xA, xB⟩)
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Extensions
Ball surface territory

Theorem 3
In a Tom-and-Jerry Game with ball surface territory and angle distance,
there exists no Type I Nash Equilibrium.

Proof: If the equilibrium strategy of seeker is a single point, then this will
lead to contradiction.
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Extensions
Ball surface territory

Theorem 4
In a Tom-and-Jerry Game with ball surface territory and angle distance,
the mixed strategy profile (σ∗

A, σ
∗
B) is a mixed strategy Nash Equilibrium, if

both players’ strategy profiles satisfy point symmetry with regard to the
center of the ball, i.e.

∀x ∈ Sn, ∀i ∈ {A,B}, σ∗
i (x) = σ∗

i (−x)

In any mixed strategy Nash Equilibria, the equilibrium utility is

U∗
A = −π

2
, U∗

B =
π

2

• Average angle distance: a quarter of a circle
• Equilibrium utility: independent of the space dimension n.
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Extensions
Ball surface territory

• Theorem 4 is just a sufficient condition for a strategy profile being a
mixed strategy Nash Equilibrium.

• Necessity?

Conjecture
In a Tom-and-Jerry Game with ball surface territory and angle distance, if
a mixed strategy profile (σ∗

A, σ
∗
B) is a mixed strategy Nash Equilibrium,

then both players’ strategy profiles satisfy point symmetry with regard to
the center of the ball, i.e.

∀x ∈ Sn, ∀i ∈ {A,B}, σ∗
i (x) = σ∗

i (−x)

We leave the rigorous proof as an open problem.
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Extensions
Partially overlapped territory

Example
XA and XB are two crossing segments in R2. All the Nash Equilibria in
this example can be characterized as (x∗, σ∗

B), where σ∗
B(B1) = λ and

σ∗
B(B2) = 1− λ and λ ∈ [0, 1].

A1 = (−1, 0) A2 = (1, 0)

B1 = (0, 1)

B2 = (0,−1)

x∗

Figure: An R2 example with partially overlapped territory. Here XA is a segment
from (−1, 0) to (1, 0) (colored in dark blue) and XB is a segment from (0, 1) to
(0,−1) (colored in light blue).
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Extensions
Complementary territory

Example
Assume that XB is a compact convex set and XA = (Rn − XB) ∪ ∂XB (so
that XA is also a closed set).

x1 x2
0 1

x∗B

(a)

A

B

x∗B

(b)
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Conclusion
This paper

Contributions
• interest conflict between proximity and distance
• characterization of Type I and Type II Nash Equilibrium
• a combination of game theory and convex analysis

Further exploration
• necessary and sufficient condition for the existence of Type II Nash

Equilibrium for general cases
• ball surface territory X
• assumptions

• territory assumptions to be relaxed
• non-convex territory X
• unoverlapped territory XA ̸= XB

• utility functions to be relaxed
• any p−norm distance
• non-linearly dependent on distance
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